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Low-frequency fluctuations in the Lang-Kobayashi equations

D. Pieroux and Paul Mandel
Optique Nonlinaire Theorique, Universit Libre de Bruxelles, Campus Plaine Code Postal 231, B-1050 Bruxelles, Belgium

~Received 4 April 2003; published 4 September 2003!

The Lang-Kobayashi equations are simplified by a local analysis that focuses, in the long-delay-time limit,
on one pair of mode-antimode only. In the domain of hysteresis between the two steady states, low frequency
fluctuations~LFF! can be observed if there is a domain of bistability where both steady states are unstable. The
high-frequency oscillations and the drop-offs in the LFF regime are associated with a dynamics close to the
unstable upper and lower branch steady states, respectively.
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I. INTRODUCTION

In 1980, Lang and Kobayashi~LK ! @1# proposed a simple
model to describe the dynamics of a single mode semic
ductor laser subject to a coherent optical feedback. The fe
back loop is modelled by an external mirror. This create
passive external cavity. The main feature of the LK mode
that the round trip timet of the laser beam in the extern
cavity is explicitly taken into account via the delayed co
plex electric field variableE(t2t)5r(t2t)eiw(t2t) fed
back in the laser after a round trip in the external cavity. T
opens the door to a very complex dynamics since the sys
phase space has infinite dimension@2#. In particular, it can
sustain a chaotic regime displaying low frequency fluct
tions ~LFF! @3#. They are best observed in the low-pass
tered laser intensity as sudden and irregular drop-offs
lowed by an intensity recovery@4#.

The LFF dynamics associated with the LK model h
been the subject of active research for more than two dec
~see Ref.@5# for a review and also Ref.@6#, which is the
latest of an annual series of proceedings on this topic!. The
purpose of this paper is to analyze the LFF in a simple c
where a clear distinction can be made between the ca
and the effects of the LFF.

Sano demonstrated numerically that LFF could be
scribed as chaotic itineracy among the many unstable ste
states of the system@7#. A similar result was obtained inde
pendently by van Tartwijket al. @8#. The question remains
however, to know if that itineracy is the cause or the con
quence of the observed LFF.

Using the Sano result, Huyetet al. attempted to replace
the LK model by a system of ordinary differential equatio
@9#. To achieve that goal, they considered the small de
time limit, replacing the delayed field amplituder(t2t) by
its current valuer(t) and the delayed phasew(t2t) by its
first-order expansionw(t)2tdw(t)/dt. The resulting equa-
tions have no delayed term any more though the steady s
are still those of the full LK model. According to the San
description, this simplified system was therefore a good c
didate to display LFF, which are indeed observed. Howe
there is no one-to-one correspondence between the solu
of the LK model and those of this reduced model becaus
is not a consistent asymptotic approximation of the LK eq
tions. The model was further analyzed in Ref.@10# where
correlations between the emergence of the LFF and the
bility of the steady states were found. Similar correlatio
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are also observed in this paper, but in the opposite limit o
long time delay.

Using a local multiple time scale analysis, Giacomelli a
Politi @11,12# showed that the delay differential LK equation
are approximated by a partial differential complex Ginzbu
Landau equation in the vicinity of Hopf bifurcations. Th
approach helps understand the richness of the delay diffe
tial equations. Unfortunately it is restricted to the vicinity
the bifurcation point.

In another attempt to simplify the LK model, we hav
recently proposed to take advantage of the fact that L
appear for pumping close to threshold, weak feedback le
and large delay@13#. Taking into account that the free carrie
lifetime is much larger than the photon lifetime for a typic
semiconductor laser, we have adiabatically eliminated
free carrier dynamics, reducing the LK model to a sing
complex delay equation in the long delay time limit@13#.
This amounts to expand the electric fieldELK(t,t), solution
of the LK equations, in inverse fractional powers of the de
time t as ELK(t,t)5t21/2E(t)1O(t21). Numerical simu-
lations showed that the reduced LK model forE(t) is still
able to sustain LFF. Its advantage over the complete
model comes from the elimination of the laser relaxati
mechanism from the system dynamics: the reduced mode
longer presents the numerical stiffness of the LK model,
lowing a much simpler and faster numerical integration.
noted in Ref.@13#, the long delay time limit is regular, which
implies that all solutions of the reduced model are also so
tions of the full model in the limit of a weak feedback an
for pumping close to the solitary threshold, the converse
ing equally true. Simplifying further the reduced LK mod
is thus a sensible strategy to determine properties of the L
In this paper, we show that the reduced model can be fur
simplified to retain only one branch of finite intensity stea
states. In the language of the LK equations, this amount
select one particular external cavity mode and neglect all
others. The resulting system still displays LFF and is sim
enough to allow for a characterization of this LFF attract
which is the purpose of this paper.

The plan of the paper is as follows. In Sec. II, we deri
a simplified model from the reduced LK model. In Sec. I
analytical results are presented, followed by numerical
sults in Sec. IV. A detailed discussion of LFF is presented
Sec. V before we conclude in Sec. VI with a clear distincti
between the causes and the effects of LFF in the frame of
©2003 The American Physical Society04-1
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D. PIEROUX AND P. MANDEL PHYSICAL REVIEW E68, 036204 ~2003!
simplified single mode deterministic model analyzed in t
paper.

II. MODEL DERIVATION

The dynamics of the complex electric fieldE(t)
5r(t)eiw(t) of a semiconductor laser pumped exactly at
solitary laser threshold and subject to a weak coherent o
cal feedback with a large delay can be described by the
duced LK model@13#:

dE

dt
52~11 ia!uEu2E1hE~ t21!, ~1!

in complex form, or

dr

dt
52r31hr̂ cos~w2ŵ !, ~2!

r
dw

dt
52ar32hr̂ sin~w2ŵ !, ~3!

in real form, where the dimensionless timet is expressed in
units of the delay time,a is the linewidth enhancement fac
tor, andh>0 is the feedback strength. The delay appe
through r̂[r(t21) and ŵ[w(t21). Most electronic de-
vices are too slow to record the instantaneous laser inten
uEu25r2. Therefore, to compare theoretical results with e
perimental results, it is necessary to introduce a low-p
filtered intensityI given by

dI

dt
5~r22I !/t f , ~4!

wheret f is the time constant of the filter. This amounts to
time averaging ofr2, which is precisely what a slow detecto
does.

The reduced LK equations~2! and ~3! have steady, peri-
odic, quasiperiodic, and chaotic solutions, among which
LFF type of solutions. For a moderateh, multiple dynamical
regimes coexist, with multistability between some of the
An example of LFF regime is illustrated in Fig. 1. In th
regime, Fig. 1~b! shows that the phase differencew2ŵ re-
mains mostly located in the vicinity ofw2ŵ5213'
24p, which corresponds to one specific unstable ste
state. This suggests a two-step reduction of the LK equat
to focus on that particular branch of steady states and
dynamics connected to that branch. First, we introduce a
phase variablew5f24pt. As a result,f2f̂ remains most
of the time close to zero. Second, we replace the trigonom
ric functions by their truncated Taylor’s expansion. The
sulting simplified model is thus given by

dr

dt
52r31hF12

1

2
~f2f̂ !2G r̂, ~5!

r
df

dt
54pr2ar32h~f2f̂ !r̂. ~6!
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Because of the series truncation, the simplified model~5! and
~6! are obviously not equivalent to the reduced LK mod
Nevertheless, using the same parameters as in Fig. 1, F
shows that it can still sustain LFF. Comparing the two sets
time traces reveals qualitative differences. In particular,
two pulses wheref2f̂ reached26, seen in Fig. 1, are
absent in the simplified model. This is normal since the
excursions correspond to values off2f̂ for which the trun-
cated series is not a good approximation of the trigonome
functions anymore. This is why the LFF produced by t
reduced LK model~1! are more irregular than those of th
simplified model~5! and ~6!.

III. ANALYTICAL RESULTS

As explained in the Introduction, the main motivation f
simplifying the reduced LK model is to simplify its bifurca

FIG. 1. Low frequency fluctuations obtained by numerical in
gration of the reduced LK model, Eq.~1!. Parameters areh56.95
and a53. The intensity is filtered according to Eq.~4! with t f

51.

FIG. 2. Low frequency fluctuations obtained by numerical in
gration of the simplified model, Eqs.~5! and ~6!. The intensity is
filtered according to Eq.~4! with t f51. Same parameters as i
Fig. 1.
4-2



a

n

-
he

y

s

nt

L

-

nin
ex
m

pe

r

the

e of
hers

opf
the
nd

eg-
s are
n.

ese
re-
.

lity.

tect
ith

ugh

s
fro

es

l

3

LOW-FREQUENCY FLUCTUATIONS IN THE LANG- . . . PHYSICAL REVIEW E 68, 036204 ~2003!
tion diagram without disabling LFF generation. The bifurc
tion diagrams of the reduced model~2! and ~3! and of the
simplified model~5! and ~6! are displayed in Figs. 3~a! and
3~b!, respectively. A detailed description of the bifurcatio
diagram shown in Fig. 3~a! for the reduced LK model is
found in Ref.@13#. For the simplified model, the branch la
beled St in Fig. 3~b! corresponds to steady solutions of t
form r(t)5rs and w(t)5vst. In the LK terminology, the
upper~lower! part of the branch corresponds to modes~an-
timodes! of the external cavity. The steady solutions are

vs5
h11

ah
6

A11h@2a~ah24p!121h#

ah
, ~7!

rs
25~22vs

2!h/2. ~8!

The highest values ofvs belong to the lower branch stead
state. There are only three possibilities:~i! no steady state
solution@leftmost part of Fig. 3~b!#; ~ii ! only one steady state
@rightmost part of Fig. 3~b!#; ~iii ! two coexisting steady state
@central part of Fig. 3~b!#. This contrasts with the reduced LK
model for which an increasing number of modes and a
modes coexist for increasingh. For instance, with the value
h56.95 that was used in Figs. 1 and 2, the reduced
model has seven coexisting steady solutions~of which only
one is stable!, while the simplified model has only two co
existing steady solutions, both unstable. Equations~7! and
~8! also reveal that fora,2p/(2A2p21)'0.797, the
steady branch emerges supercritically and has no tur
point. However, for conventional semiconductor lasers,
perimental values ofa are in the range 3–5. For quantu
well lasers,a.2, and for quantum dot lasersa.1. There-
fore, we do not consider the supercritical case in this pa
The branch of finite intensity solutions starts ath52A2p

FIG. 3. Bifurcation diagrams fora53. The steady branche
emerge from the zero solution, the periodic branches emerge
the steady branches. Thick~thin! lines correspond to stable~un-
stable! regime. Labels St and 1–6 designate the same branch
both diagrams. Circles~squares! are primary~secondary! Hopf bi-
furcations leading to periodic~quasiperiodic! solutions. Triangles
are period doubling bifurcations.~a! Reduced LK model, Eq.~1!.
~b! Simplified model, Eqs.~5! and ~6!.
03620
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21 with rs50 andvs5A2. Following that branch,h and
vs decrease whilers increases. There is a turning point fo
vs54p2A(16p2a22a28p)/a. Beyond the turning
point, vs continues to decrease whileh and rs increase.
Asymptotically, for h→`, it is easy to verify thatv→(1
2A112a2)/a,0 andrs'(12v`

2 )h/2→`.

IV. NUMERICAL RESULTS

To complement the analytical results, we have used
numerical packageDDEBIFTOOL @14# to locate the Hopf bi-
furcations on the branches of steady states. We found thre
them on the lower part of the steady branch and three ot
on the upper steady branch forh<9. There are many more
Hopf bifurcations for larger values ofh. As seen in Fig. 3~b!,
the stable section of the upper steady branch ends at a H
bifurcation. Branches of periodic solutions emerge from
Hopf bifurcations. Secondary Hopf bifurcations were fou
on each of the six periodic branches of Fig. 3~b!. All periodic
branches are unstable, with the exception of two small s
ments on the branches labeled 3 and 4. These segment
limited by a turning point and a secondary Hopf bifurcatio
Numerical integration of the simplified equations~5! and~6!
shows that stable quasiperiodic regimes emerge from th
two secondary Hopf bifurcations. Unstable quasiperiodic
gimes emerge from the other secondary Hopf bifurcation

The numerical packageDDEBIFTOOL is able to follow only
steady and periodic branches, irrespective of their stabi
We have used direct numerical time integration, sweepingh,
to obtain the quasiperiodic and chaotic branches. To de
multistable regimes, two sweepings are performed: one w
increasingh @Fig. 4~a!# and one with decreasingh @Fig.
4~b!#. To avoid problems related to the slow passage thro
bifurcations @15,16#, a small perturbation was added tor

m

in

FIG. 4. Bifurcation diagram fora53 obtained by numerica
integration of the simplified LK model, Eqs.~5! and~6!. The extre-
mum values ofr(t) are plotted, i.e., values for whichdr/dt van-
ishes:~a! Forward,~b! backward sweeping ofh. Labels: St, 3, and
4 correspond to the stable section of the same branches in Fig.~b!;
7 indicates another periodic branch absent from Fig. 3~b!.
4-3
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D. PIEROUX AND P. MANDEL PHYSICAL REVIEW E68, 036204 ~2003!
each timeh was updated, and the system was let to re
before measuring the local extrema ofr. With this proce-
dure, we found one more periodic branch. It is labeled 7
Fig. 4 to avoid confusion with the periodic branches of F
3. It starts ath'1.8 and remains stable up toh'3.9 where
the regime becomes quasiperiodic. For higherh, there is a
transition towards a chaotic regime, followed by a quasip
odic regime. Ath'4.84, there is an inverse Hopf bifurcatio
to a periodic regime. The periodic branch becomes unst
at h'4.86 and the system jumps to the steady state bra
This small periodic branch corresponds to the small sta
section of the periodic branch 3 of Fig. 3. The stable par
branch 4 of Fig. 3 is also observed in Fig. 4~b!, while it is
absent from Fig. 4~a! because of the multistability existin
with the steady state. Finally, it is seen that forh higher than
6, the system is chaotic.

Let us compare the bifurcation diagram of the reduced
model, Fig. 3~a!, and that of the simplified model, Fig. 3~b!.
Although multiple steady branches are seen in Fig. 3~a!, only
one steady state branch exists in Fig. 3~b!, a direct conse-
quence of the manipulations leading to the simplified eq
tions. The upper part of the steady branch, labeled St in
3~a!, matches well the corresponding branch of the simplifi
model. We checked that definingf5w12(n21)pt with
n51, 2, . . . selects thenth upper branch. The lower part o
the steady state branch, characterized by the largestvs , suf-
fers the largest deformation. For instance, the connectio
the zero solution occurs ath57p/2510.996 for the reduced
LK model, while it occurs ath52A2p21'7.886 for the
simplified model.

There is very good agreement between the two models
the number and the position of the Hopf bifurcations. For
range ofh plotted in Fig. 3~b!, six Hopf bifurcations are
found, three on the upper part of the branches and thre
the lower ones. The shape and stability of the periodic so
tions close to the Hopf bifurcations that emerge on the up
steady state branch are similar for the reduced and the
plified models. However, branches 1–3 display marked
ferences. In the case of the reduced LK model, branche
and 2 form bridges between the selected steady branch
two other branches. Because the latter branches have
eliminated in the simplified model, the corresponding pe
odic branches have a different topology away from the bif
cation points and eventually collide with the zero solutio
Concerning the two branches 3, they both emerge subc
cally but then evolve very differently in both figures. Due
a unresolved numerical problem, we failed at continuing f
ther the unstable branches 3 for both figures.

V. LFFs ATTRACTOR

In this section, we describe the LFFs in the simplifi
model. The first problem to solve is how to analyze comp
attractors of the simplified model. There are three inform
tions that can be obtained easily from numerical simulatio
the phasef, the instantaneous intensityr2, and the filtered
intensityI. These three informations are used, for instance
Fig. 5 for two segments of the same time series generate
Eqs. ~5! and ~6!. From top to bottom, these figures displa
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the portrait of the attractor in the phase plane (f2f̂,r), the
instantaneous intensity versus time, and the filtered inten
versus time. The two steady states are indicated in the p
portraits: the white dot for the upper branch and the black
for the lower branch. It is seen that the high-frequency os
lations, which have the same frequency forr2 and for I,
correspond to the motion in the vicinity of the upper bran
steady state, while the drop-offs correspond to segment
the trajectory in the vicinity of the lower branch steady sta
Comparing Figs. 5~a1! with 5~c1! and 5~a2! with 5~c2!
shows that there is a one-to-one correspondence betwee
trajectories in the vicinity of the black dot~lower branch
steady state! and the fine structure of the drop-off. Thu
comparing the phase portrait and the averaged intensity
sensible way to analyze the attractor and does not introd
a bias.

Important steps are illustrated in Figs. 6 and 7. In Fi
6~a!–6~c! and 7~a!–7~c!, the upper branch steady state~white
dot! is stable and coexists with the stable periodic and q
siperiodic solutions. The two Hopf bifurcations on the upp
branch, leading to branches labeled 4 and 5, occur ah
.6.145 andh.7.129. On the lower branch, the three Ho
bifurcations, leading to branches 1, 2, and 3, occur ah
.7.115, 6.11, and 4.931, respectively. The lower bran
vanishes ath52A2p21.7.886.

Figures 6~a! and 7~a! display two complementary view
of the periodic solution located on the stable section
branch 4 in Fig. 3~b!. Increasingh, this solution is destabi-
lized by a secondary Hopf bifurcation from which a bran
of quasiperiodic solutions emerge supercritically@Figs. 6~b!
and 7~b!#. Increasingh, the amplitude of the quasiperiodi
solution increases while the quasiperiodic intensity tempo

FIG. 5. Phase space portrait, instantaneous intensity (r2), and
filtered intensity~I! for two different time intervals of the sam
solution of the simplified model. Parameters area53, h56.2, and
t f51.
4-4



ul
di
us
ed
n
qu
e

there
ear.

two
ile
un-
fil-
ing
de
-offs
y

s its

h of
r

and

sive
ha-

h a

ac-

e
LK

d

lo
o

6.

at

ap-
of

LOW-FREQUENCY FLUCTUATIONS IN THE LANG- . . . PHYSICAL REVIEW E 68, 036204 ~2003!
pattern is continuously deformed. A nascent drop-off res
from the steepening of the minimum in the quasiperio
solution. Ath56.04, there is a qualitative change: the tor
of quasiperiodic solutions is no longer uniformly cover
@Figs. 7~c!#. The transition between the two regimes is co
tinuous. These three figures represent the periodic and
siperiodic attractors that coexist with a stable steady stat
the upper branch.

FIG. 6. Intensity time traces fora53 andt f51 illustrating the
appearance and development of the LFF attractor and obtaine
numerical integration of the simplified model, Eqs.~5! and ~6!.
Values ofh: ~a! 5.75, ~b! 5.85, ~c! 6.04, ~d! 6.15, ~e! 6.25, and~f!
6.95.

FIG. 7. Phase diagrams illustrating the apparition and deve
ment of the LFF attractor and obtained by numerical integration
the simplified model, Eqs.~5! and~6!. Same parameters as in Fig.
The white~black! dot is at the position of the upper~lower! steady
state. The lower steady state is unstable. The upper steady st
stable only for parts~a!–~c!.
03620
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As the upper branch steady state becomes unstable,
is a qualitative change in the solutions and the LFF app
In the domain ofh covered by Figs. 6~d!, 6~e!, 7~d!, and
7~e!, the manifold associated with the upper branch has
unstable directions and an infinity of stable directions, wh
the manifold associated with the lower branch has five
stable directions and an infinity of stable directions. The
tered intensity displays the typical LFF structure. Increas
furtherh leads to the accentuation of the drop-off amplitu
and an increase of the average time between the drop
@Fig. 6~d!#. The relation betweenh and the average dela
between two drop-offs is not monotonic: forh56.25, @Fig.
6~e!#, the average duration between the drop-offs reache
maximum, slightly less than 100 delay times. Figure 6~e!
also shows that the plateau duration as well as the dept
the drop-offs vary significantly in a single run. A furthe
increase ofh leads to a decrease of the plateau duration
to an increase of the drop-off amplitude@Fig. 6~f!#.

Increasing the feedback strength leads to the progres
destruction of the LFF and its replacement by another c
otic attractor, as shown in Fig. 8. Figure 8~a!, for h57.5,
shows that the LFF attractor becomes more irregular, wit
new small scale structure appearing. Forh58 @Fig. 8~b!#,
the system jumps chaotically between two coexisting attr
tors. Finally, no more intensity recovery occurs@Fig. 8~c! for
h58.5], and the LFF dynamics is totally gone. This regim
has been called coherence collapse in the case of the

by

p-
f

e is

FIG. 8. Intensity time traces illustrating the progressive dis
pearance of the LFF regime obtained by numerical integration
the simplified model, Eqs.~5! and ~6!. Values ofh: ~a! 7.5, ~b! 8,
~c! 8.5, ~d! 9. Other parameters are as in Fig. 1.
4-5
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D. PIEROUX AND P. MANDEL PHYSICAL REVIEW E68, 036204 ~2003!
model @17#. Increasing further the feedback leads to a d
crease of the intensity variation@Fig. 8~d! for h59]. We
have not analyzed this chaotic attractor since the simpli
model is not to be taken seriously in that domain of para
eters. However, the mechanism through which the LFF
tractor disappears and the coarse grained structure of
emerging chaotic attractor are in qualitative agreement w
what can be observed for the complete LK equations.

VI. CONCLUSION

Starting from the reduced version of the LK model va
in the long delay time limit, we derived a simplified mod
based on the numerical observation that the phase differ
w2ŵ remains most of the time close to a multiple of 2p,
even in the LFF regime. The result of the simplification
fully appreciated by comparing the bifurcation diagrams
fore and after simplification: from the infinitely many stea
branches, the simplification scheme amounts to selec
only one connected pair of them. Only the periodic, qua
periodic and chaotic attractors connected to the two sele
branches remain. Few analytical results can be derived.
ing the numerical continuation packageDDEBIFTOOL, the
branches of periodic solutions emerging from the ste
branch have been described. Quasiperiodic and chaotic s
tions have been found by numerical simulations.

From the analysis in Sec. V, it is seen that necessary c
ditions for the occurrence of LFF for this class of delay d
ferential equations are~1! the occurrence of steady state b
stability and~2! instability of both steady states. The doma
of LFF does not strictly coincide with the bistability domai
LFF begin forh slightly larger than the lower bound of th
hysteresis~where the quasiperiodic solutions are observ!
and extend slightly beyond that domain. The only parame
that are necessary to account for the LFF are the feedb
strengthh and the phase-amplitude couplinga. Two direct
consequences of this analysis are that~i! the relaxation os-
cillations which are present in the LK equations are by
tt
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.

B:
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means related to the LFF phenomenon: LFF can occur w
or without relaxation oscillations since they are absent in
reduced and in the simplified models. This property was
ready explained previously@13#. ~ii ! The chaotic itineracy
described by Sano is a consequence of LFF in the pres
of multiple coexisting steady branches and not a cause of
LFF.

The results obtained in this paper do not rule out the
fluence of other parameters. The only statement which
made here is that LFF can be explained in terms of a sin
mode deterministic theory that contains only one pair
mode-antimode, which have a domain of bistability and
both unstable. The smooth recovery observed after a drop
is consistent with the experimental results. It was shown t
after averaging the output signal over many samples,
recovery is stepwise@18#. However, the height of the step
decreases with increasing delay time and therefore it is n
ral that the recovery appears as continuous in an asymp
theory based on an expansion in inverse powers of the d
time. Likewise, noise is not a prerequisite for the occurren
of LFF, as assumed in some previous studies@19–21#. Of
course, experimental results are necessarily affected
noise, and therefore experimentally observed LFF will d
play a number of features that pertain to noisy systems.
again, we stress that these are consequences and not c
of the LFF. The same is true for the relaxation oscillatio
Finally, it should be noticed that the correlation between
LFF attractor and the instability of the upper branch stea
state is similar to the mechanism found in the more comp
situation analyzed in the short delay time limit@10#.
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